data warehouse data warehouse

Data Warehouse adalah : Pengertian, Karakteristik, Tugas dan Keuntungan data Warehouse

Sebelum kita membahas tentang data warehouse, hal yang harus dipahami terlebih dahulu yaitu pengertian tentang data, informasi dan database. Menurut Steven Alter, data merupakan fakta,gambar atau suara yang mungkin atau tidak berhubungan atau berguna bagi tugas tertentu.

Menurut McLeod, data terdiri dari fakta-fakta dan angka yang secara relatif tidak berarti bagi pemakai. Sedangkan informasi adalah data yang sudah diproses atau data yang memiliki arti.

Disini kita dapat melihat bahwa data merupakan “suatu bentuk keterangan-keterangan yang belum diolah atau dimanipulasi sehingga belum begitu berarti bagi sebagian pemakai. Sedangkan informasi merupakan data yang sudah di olah sehingga memiliki arti”.

Menurut James A. O’Brien Database adalah suatu koleksi terintegrasi dimana secara logika berhubungan dengan record dari file. Menurut Fatansyah, Database adalah kumpulan data yang saling berhubungan yang disimpan secara bersama sedemikian rupa dan tanpa pengulangan(redudansi) yang tidak perlu, untuk memenuhi berbagai kebutuhan.

Jadi Database adalah tempat penyimpanan data yang saling berhubungan secara logika, sehingga bisa digunakan untuk mendapatkan suatu informasi yang diperlukan oleh suatu organisasi atau perusahaan.

Sedangkan data yang diperoleh suatu organisasi atau perusahaan umumnya didapat dari kegiatan operasional sehari-hari atau hasil dari transaksi. Dari perkembangan model database, muncullah apa yang disebut dengan data warehouse.

Pengertian Data Warehouse

Pengertian Data Warehouse dapat bermacam-macam namun mempunyai inti yang sama, seperti pendapat beberapa ahli berikut ini :

  1. Menurut W.H. Inmon dan Richard D.H., data warehouse adalah koleksi data yang mempunyai sifat berorientasi subjek,terintegrasi,time-variant, dan bersifat tetap dari koleksi data dalam mendukung proses pengambilan keputusan management.
  2. Menurut Vidette Poe, data warehouse merupakan database yang bersifat analisis dan read only yang digunakan sebagai fondasi dari sistem penunjang keputusan.
  3. Menurut Paul Lane, data warehouse merupakan database relasional yang didesain lebih kepada query dan analisa dari pada proses transaksi, biasanya mengandung history data dari proses transaksi dan bisa juga data dari sumber lainnya. Data warehouse memisahkan beban kerja analisis dari beban kerja transaksi dan memungkinkan organisasi menggabung/konsolidasi data dari berbagai macam sumber.
Baca Juga :   Statistika Deskriptif: Pengertian Tabulasi, Diagram dan Grafik

Jadi, data warehouse merupakan metode dalam perancangan database, yang menunjang DSS(Decission Support System) dan EIS (Executive Information System). Secara fisik data warehouse adalah database, tapi perancangan data warehouse dan database sangat berbeda. Dalam perancangan database tradisional menggunakan normalisasi, sedangkan pada data warehouse normalisasi bukanlah cara yang terbaik.

Dari definisi-definisi yang dijelaskan tadi, dapat disimpulkan data warehouse adalah database yang saling bereaksi yang dapat digunakan untuk query dan analisisis, bersifat orientasi subjek, terintegrasi, time-variant, tidak berubah yang digunakan untuk membantu para pengambil keputusan.

Karakteristik Data Warehouse

Karakteristik data warehouse menurut Inmon, yaitu :

1. Subject Oriented (Berorientasi subject)

Data warehouse berorientasi subject artinya data warehouse didesain untuk menganalisa data berdasarkan subject-subject tertentu dalam organisasi,bukan pada proses atau fungsi aplikasi tertentu.

Data warehouse diorganisasikan disekitar subjek-subjek utama dari perusahaan (customers,products dan sales) dan tidak diorganisasikan pada area-area aplikasi utama(customer invoicing,stock control dan product sales).

Hal ini dikarenakan kebutuhan dari data warehouse untuk menyimpan data-data yang bersifat sebagai penunjang suatu keputusan, dari pada aplikasi yang berorientasi terhadap data.

Jadi dengan kata lain, data yang disimpan adalah berorientasi kepada subjek bukan terhadap proses. Secara garis besar perbedaan antara data operasional dan data warehouse yaitu :

 Data Operasional Data Warehouse
Dirancang berorientasi hanya pada aplikasi dan fungsi tertentuDirancang    berdasar    pada   subjek-subjek tertentu(utama)
Focusnya pada desain database dan prosesFocusnya pada pemodelan data dan desain data
Berisi rincian atau detail dataBerisi data-data history yang akan dipakai dalam proses analisis
Relasi antar table berdasar aturan terkini(selalu mengikuti rule(aturan) terbaru)Banyak aturan bisnis dapat tersaji antara tabel-tabel

2. Integrated (Terintegrasi)

Data Warehouse dapat menyimpan data-data yang berasal dari sumber-sumber yang terpisah kedalam suatu format yang konsisten dan saling terintegrasi satu dengan lainnya. Dengan demikian data tidak bisa dipecah-pecah karena data yang ada merupakan suatu kesatuan yang menunjang keseluruhan konsep data warehouse itu sendiri.

Syarat integrasi sumber data dapat dipenuhi dengan berbagai cara sepeti konsisten dalam penamaan variable,konsisten dalam ukuran variable,konsisten dalam struktur pengkodean dan konsisten dalam atribut fisik dari data.

Contoh pada lingkungan operasional terdapat berbagai macam aplikasi yang mungkin pula dibuat oleh developer yang berbeda. Oleh karena itu, mungkin dalam aplikasi- aplikasi tersebut ada variable yang memiliki maksud yang sama tetapi nama dan format nya berbeda. Variable tersebut harus dikonversi menjadi nama yang sama dan format yang disepakati bersama.

Baca Juga :   Kompetensi Absolut dan Kompetensi Relatif Lembaga Peradilan

Dengan demikian tidak ada lagi kerancuan karena perbedaan nama, format dan lain sebagainya. Barulah data tersebut bisa dikategorikan sebagai data yang terintegrasi karena kekonsistenannya.

3. Time-variant (Rentang Waktu)

Seluruh data pada data warehouse dapat dikatakan akurat atau valid pada rentang waktu tertentu. Untuk melihat interval waktu yang digunakan dalam mengukur keakuratan suatu data warehouse, kita dapat menggunakan cara antara lain :

  • Cara yang paling sederhana adalah menyajikan data warehouse pada rentang waktu tertentu, misalnya antara 5 sampai 10 tahun ke
  • Cara yang kedua, dengan menggunakan variasi/perbedaan waktu yang disajikan dalam data warehouse baik implicit maupun explicit secara explicit dengan unsur waktu dalam hari, minggu, bulan dsb. Secara implicit misalnya pada saat data tersebut diduplikasi pada setiap akhir bulan, atau per tiga bulan. Unsur waktu akan tetap ada secara implisit didalam data tersebut.
  • Cara yang ketiga,variasi waktu yang disajikan data warehouse melalui serangkaian snapshot yang panjang. Snapshot merupakan tampilan dari sebagian data tertentu sesuai keinginan pemakai dari keseluruhan data yang ada bersifat read-only.

4. Non-Volatile

Karakteristik keempat dari data warehouse adalah non-volatile,maksudnya data pada data warehouse tidak di-update secara real time tetapi di refresh dari sistem operasional secara reguler.

Data yang baru selalu ditambahkan sebagai suplemen bagi database itu sendiri dari pada sebagai sebuah perubahan. Database tersebut secara kontinyu menyerap data baru ini, kemudian secara incremental disatukan dengan data sebelumnya.

Berbeda dengan database operasional yang dapat melakukan update,insert dan delete terhadap data yang mengubah isi dari database sedangkan pada data warehouse hanya ada dua kegiatan memanipulasi data yaitu loading data (mengambil data) dan akses data (mengakses data warehouse seperti melakukan query atau menampilan laporan yang dibutuhkan, tidak ada kegiatan updating data).

Keuntungan Data Warehouse

Data warehouse merupakan pendekatan untuk menyimpan data dimana sumber-sumber data yang heterogen(yang biasanya tersebar pada beberapa database OLTP) dimigrasikan untuk penyimpanan data yang homogen dan terpisah.

Keuntungan yang didapatkan dengan menggunakan data warehouse tersebut dibawah ini (Ramelho).

  1. Data diorganisir dengan baik untuk query analisis dan sebagai bahan untuk pemrosesan
  2. Perbedaan diantara struktur data yang heterogen pada beberapa sumber yang terpisah dapat
  3. Aturan untuk transformasi data diterapkan untuk memvalidasi dan mengkonsolidasi data apabila data dipindahkan dari database OLTP ke data
  4. Masalah keamanan dan kinerja bisa dipecahkan tanpa perlu mengubah sistem produksi.
Baca Juga :   Data Mining adalah: Pengertian, Fungsi, Konsep dan Contoh Data Mining

Membangun data warehouse tentu saja memberikan keuntungan lebih bagi suatu perusahaan, karena data warehouse dapat memberikan keuntungan strategis pada perusahaan tersebut melebihi pesaing-pesaing mereka.

Keuntungan tersebut diperoleh dari beberapa sumber (Sean Nolan,Tom Huguelet):

  1. Kemampuan untuk mengakses data yang besar
  2. Kemampuan untuk memiliki data yang konsistent
  3. Kemampuan kinerja analisa yang cepat
  4. Mengetahui adanya hasil yang berulang-ulang
  5. Menemukan adanya celah pada business knowledge atau business
  6. Mengurangi biaya administrasi
  7. Memberi wewenang pada semua anggota dari perusaahan dengan menyediakan kepada mereka informasi yang dibutuhkan agar kinerja bisa lebih

Tugas-Tugas Data Warehouse

Ada empat tugas yang bisa dilakukan dengan adanya data warehouse Menurut Williams, keempat tugas tersebut yaitu:

1. Pembuatan laporan

Pembuatan laporan merupakan salah satu kegunaan data warehouse yang paling umum dilakukan. Dengan menggunakan query sederhana didapatkan laporan perhari,perbulan, pertahun atau jangka waktu kapanpun yang diinginkan.

2. On-Line Analytical Processing (OLAP)

Dengan adanya data warehouse,semua informasi baik detail maupun hasil summary yang dibutuhkan dalam proses analisa mudah didapat.

OLAP mendayagunakan konsep data multi dimensi dan memungkinkan para pemakai menganalisa data sampai mendetail, tanpa mengetikkan satupun perintah SQL. Hal ini dimungkinkan karena pada konsep multi dimensi, maka data yang berupa fakta yang sama bisa dilihat dengan menggunakan fungsi yang berbeda.

Fasilitas lain yang ada pada sofware OLAP adalah fasilitas rool-up dan drill-down. Drill-down adalah kemampuan untuk melihat detail dari suatu informasi dan roll-up adalah kebalikannya.

3. Data mining

Data mining merupakan proses untuk menggali(mining) pengetahuan dan informasi baru dari data yang berjumlah banyak pada data warehouse, dengan menggunakan kecerdasan buatan (Artificial Intelegence), statistik dan matematika. Data mining merupakan teknologi yang diharapkan dapat menjembatani komunikasi antara data dan pemakainya.

Beberapa solusi yang diberikan data mining antara lain :

  1. Menebak target pasar
    Data mining dapat mengelompokkan (clustering) model-model pembeli dan melakukan klasifikasi terhadap setiap pembeli dan melakukan klasifikasi terhadap setiap pemebeli sesuai dengan karakteristik yang diinginkan.
  1. Melihat pola beli dari waktu ke waktu
    Data mining dapat digunakan untuk melihat pola beli dari waktu ke waktu.
  1. Cross-market analysis
    Data mining dapat dimanfaatkan untuk melihat hubungan antara satu produk dengan produk lainnya.
  1. Profil pelanggan
    Data mining bisa membantu pengguna untuk melihat profil pembeli sehingga dapat diketahui kelompok pembeli tertentu cenderung kepada suatu produk apa saja.
  1. Informasi summary
    Data mining dapat membuat laporan summary yang bersifat multi dimensi dan dilengkapi dengan informasi statistik lainnya.

4. Proses informasi executive

Data warehouse dapat membuat ringkasan informasi yang penting dengan tujuan membuat keputusan bisnis, tanpa harus menjelajahi keseluruhan data.

Dengan menggunakan data warehouse segala laporan telah diringkas dan dapat pula mengetahui segala rinciannya secara lengkap, sehingga mempermudah proses pengambilan keputusan. Informasi dan data.

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *